
Določeni integral se uporablja za izračun ploščine krivočrtnega lika, ki ga na izbranem intervalu omejujeta nenegativna zvezna funkcija in abscisna os.
Označimo ga kot:

kjer je
spodnja meja in
zgornja meja določenega integrala.
To poglavje je namenjeno učencem, ki jih zanima teoretično ozadje. Učenci, ki se želijo naučiti praktične uporabe določenega integrala, lahko to poglavje izpustijo.
V koordinatnem sistemu vzemimo lik, ki je omejen z abscisno osjo, grafom zvezne funkcije
in premicama
in
.
Razdelimo interval
na n podintervalov:
Širine podintervalov so:

V vsakem podintervalu izberemo točko z absciso
tako, da velja:

Narišemo pravokotnike z višino
.
Produkt
je ploščina pravokotnika označenega na zgornji sliki

Če seštejemo ploščine vseh pravokotnikov, dobimo približek za ploščino lika, ki ga omejuje funkcija
ter premici
in
:

Tem ožji so pasovi, torej čim manjše so ploščine pravokotnikov, tem bolj se vsota ploščin približa ploščini krivočrtnega lika na intervalu
. Natančna ploščina lika je vrednost limite:

Limito imenujemo določeni integral.
Določeni integral funkcije
na intervalu
je limita vsote

ko gredo širine vseh delnih intervalov
proti
, (pri enakomerni delitvi intervala velja
, ki pri limitiranju teži proti 0), število delilnih točk n pa proti neskončnosti:

Število
je spodnja meja, število
pa zgornja meja določenega integrala.
V tem poglavju je nakazan geometrijski pomen nedoločenega integrala. Različni primeri računanja likov so obravnavani nekoliko kasneje.
Določeni integral zvezne funkcije
na intervalu
je enak ploščini lika, omejenega s krivuljo
in abscisno osjo na intervalu
:
Določeni integral, oziroma ploščino označenega lika, označimo z:

Med nedoločenim in določenim integralom velja zveza, ki jo imenujemo Newton-Leibnizova formula ali osnovni izrek integralskega računa:
Če je funkcija
zvezna na intervalu
in je
poljuben nedoločeni integral funkcije
:

potem velja:

kar zapišemo tudi:

Določeni integral je razlika nedoločenih integralov na zgornji in spodnji meji.
V praksi to pomeni, da določeni integral funkcije
na intervalu
lahko torej izračunamo tako, da najprej integriramo
. Dobimo funkcijo
, ki je nedoločeni integral funkcije
. Od vrednosti funkcije
na zgornji meji
odštejemo vrednost na spodnji meji
.
Določeni integral vsote dveh funkcij je enak vsoti določenih integralov posameznih funkcij.

Če je
odvedljiva funkcija na intervalu
potem velja:

Naj bo
. Tedaj velja:

Naj bo
. Če določenemu integralu zamenjamo meji med seboj, integral spremeni predznak.

Če sta meji enaki, ima nedoločeni integral vrednost 0.

Konstantni faktor, s katerim je pomnožena funkcija pod integralskim znakom, lahko pišemo pred integralski znak:

Če je funkcija
na intervalu
zvezna, obstaja na tem intervalu vsaj ena točka
, tako da je

Število
imenujemo povprečna vrednost funkcije na izbranem intervalu.
Povprečna vrednost funkcije
na intervalu
je:

Določeni integral zvezne funkcije
na intervalu
je enak ploščini lika, omejenega s krivuljo
in abscisno osjo na intervalu
:
Določeni integral označimo z:

Imejmo primer, ko je funkcija
na intervalu
zvezna in povsod negativna
:
Določeni integral

je zato tudi negativen in enak nasprotni vrednosti ploščine lika, omejenega z grafom funkcije
ter premicama
in
:

Da bo izračunan določeni integral enak ploščini lika, funkcijo zapišemo z absolutno vrednostjo:

Imejmo primer, ko je funkcija
na intervalu
zvezna ter pozitivna in negativna:
Določeni integral

je enak razliki med ploščinami likov, ki ležijo nad abscisno osjo in ploščinami likov, ki ležijo pod abscisno osjo (liki so omejeni z grafom funkcije in abscisno osjo). Da bo izračunani določeni integral enak ploščini označenega lika, funkcijo zapišemo s pomočjo podintervalov:

Prav tako kot računanje ploščin likov, ki jih grafi oklepajo z osjo x, lahko računamo tudi ploščine likov, ki ležijo med dvema grafoma.
Naj bosta dani funkciji
in
:
Ploščino lika, ki ga določata grafa zveznih funkcij
in
na intervalu
, kjer za vsak
iz tega intervala velja
, izračunamo kot:

Poglejmo si primer podrobneje.
Naj bosta funkciji
in
zvezni na intervalu
. Graf funkcije
naj leži nad grafom funkcije
za vsak
iz tega intervala:
Izračunati želimo ploščino lika, ki ga omejujeta grafa funkcij
in
na intervalu
:
Poglejmo najprej ploščino lika, ki ga omejujeta krivulja
in abscisna os.
Na intervalu
je ploščina lika med grafom funkcije
in abscisno osjo, glede na geometrijski pomen določenega integrala enaka:

Podobno določimo ploščino lika med grafom funkcije
in abscisno osjo.
Ploščina tega lika je tako:

Iščemo ploščino lika, ki se nahaja med obema krivuljama.
Iz slike je razvidno, da je ploščina lika med obema grafoma enaka:

Kar lahko zapišemo tudi drugače:

Naj bosta dani funkciji
in
:
Če leži kateri od grafov funkcij
in
na integracijskem intervalu
pod abscisno osjo, prištejemo obema funkcijama isto, dovolj veliko pozitivno konstanto
, da oba grafa premaknemo nad abscisno os.
Tako dobimo funkciji
in
, pri tem pa se lik, katerega ploščino bi radi izračunali, ne spremeni (ostane skladen s prvotnim). Ploščino osenčenega lika tako lahko izračunamo:

Ploščina med grafom funkcije
in abscisno osjo je:

Ploščina med grafom funkcije
in abscisno osjo pa je:

Ploščino lika med obema grafoma lahko sedaj zapišemo:

Ob upoštevanju, da je integral vsote funkcij enak vsoti integralov funkcij, vidimo, da se v računu konstanta
izniči in je ploščina osenčenega lika enaka:

Če območje, ki ga omejujeta graf funkcije
in os
na intervalu
zavrtimo za
okoli abscisne osi, dobimo rotacijsko telo.
Prostornino vrtenine, kjer funkcijo
zavrtimo za
okoli abscisne osi, izračunamo s pomočjo določenega integrala:
