
Funkcije si predstavljamo kot krivulje v ravnini, ki so lahko pretrgane ali nepretrgane. Kadar so nepretrgane, pravimo da je funkcija zvezna, če pa je krivulja v kakšni točki prekinjena, pravimo da je funkcija nezvezna.
Torej, intuitivno si lahko zveznost predstavljamo tako, da če začnemo na papir s svinčnikom risati funkcijo, je ta zagotovo zvezna vse dotlej, dokler svnčnika ne dvignemo stran od papirja.
Funkcija
je v točki
zvezna natanko takrat, ko je v točki
definirana in ima limito:

Obrat ne velja. Funkcija v
ima lahko limito, vendar v
ni zvezna.
Funkcija
je zvezna na intervalu
če je zvezna v vsaki točki tega intervala.
Če gremo z
proti
z leve strani, govorimo o levi limiti.
Oznaka za levo limito: 
Število A je leva limita funkcije
v točki
če za vsak
obstaja
da za vsak
iz
sledi 
Oznaka:

pomeni, da
narašča k 
Zgornjo matematično definicijo najlažje razložimo s pomočjo slike. Torej, poglejmo spodnjo sliko in opazujmo funkcijske vrednosti, ko se z leve približujemo
Opazimo, da se funkcijske vrednosti približujejo
Zato je leva limita v točki
enaka 
Če gremo z
proti
z desne strani, govorimo o desni limiti.
Oznaka za desno limito: 
Število A je desna limita funkcije
v točki
če za vsak
obstaja
da za vsak
iz
sledi 
Oznaka:

pomeni, da
pada k 
Tudi pri tej definiciji si pomagajmo s sliko. Sedaj opazujmo funkcijske vrednosti, ko se približujemo
z desne. Opazimo, da se funkcijske vrednosti približujejo
Zato je sedaj desna limita v točki
enaka 
Naj bo
definirana v okolici točke
.
obstaja natanko tedaj, ko obstajata leva in desna limita in sta enaki:

Na zgornji sliki vidimo, da je funkcija zvezna, saj je za
funkcija definirana. Če se približujemo k
z desne ali leve opazimo, da se funkcijske vrednosti približujejo isti vrednosti (leva in desna limita sta enaki).
Do nezveznosti lahko pride pri prehodu iz ene funkcije v drugo.
Za primer nezveznosti si poglejmo funkcijo signum (funkcijo predznaka), ki je definirana kot:


Ta funkcija je sicer povsod definirana, vendar pa v točki 0 ni zvezna - graf se tam pretrga.
Nekatere zvezne funkcije, ki so zvezne na vsem definicijskem območju so:
Kostantna funkcija: 
Linearna funkcija: 
Kvadratna funkcija: 
Potenčna funkcija z naravnim eksponentom: 
Polinomi: 
Eksponentna funkcija: 
Logaritemska funkcija:
Sinusna funkcija: 
Kosinusna funkcija: 
Če sta funkciji
in
zvezni funkciji v točki
so njuna vsota (razlika)
produkt
in kvocient
(če je
) tudi zvezne funkcije v točki
in velja:



- Zvezna funkcija, ki ni nikjer na zaprtem intervalu enaka 0, ima na vsem intervalu stalen predznak (je povsod pozitivna ali povsod negativna).
- Če je na krajiščih zaprtega intervala
na katerem je zvezna, različno predznačena, ima na tem intervalu vsaj eno ničlo.
- Funkcija, ki je zvezna na zaprtem intervalu, je na njem omejena in zavzame svojo natančno zgornjo mejo
in spodnjo mejo
in vse vrednosti med njima.
- Če je funkcija
naraščajoča in zvezna, je njena inverzna funkcija
tudi zvezna in naraščajoča funkcija.