IZREDNO OBVESTILO.
Zaradi izjemnih okoliščin povsem odpiramo bazo vsebin za vse razrede učencev osmih in devetih razredov osnovnih in za razrede dijakov srednjih šol ter njihove učitelje do konca šolskega leta. Vse informacije so na voljo na tej strani.
IZREDNO OBVESTILO.
Zaradi izjemnih okoliščin povsem odpiramo bazo vsebin za vse razrede učencev osmih in devetih razredov osnovnih in za razrede dijakov srednjih šol ter njihove učitelje do konca šolskega leta. Vse informacije so na voljo na tej strani.
IZREDNO OBVESTILO.
Zaradi izjemnih okoliščin povsem odpiramo bazo vsebin za vse razrede učencev osmih in devetih razredov osnovnih in za razrede dijakov srednjih šol ter njihove učitelje do konca šolskega leta. Vse informacije so na voljo na tej strani.
Vse o naši iniciativi, s katero do konca šolskega leta podeljujemo razredom prost dostop do vseh OpenProf vsebin, lahko preberete tu.
 
 



Avtor/ica gradiva ne nudi inštrukcij.


Štirikotnik je geometrijski lik s štirimi oglišči in s štirimi stranicami.


Ker obravnavamo enostavne like, se omejimo na štirikotnike, katerih stranice se stikajo edino v ogliščih in se med seboj ne sekajo. Imenujemo jih enostavni štirikotniki.


Enostavne štirikotnike delimo na:


  • Konveksni štirikotniki


    Za konveksne štirikotnike velja:

    • Posamezen notranji kot je manjši ali enak 180°.

    • Vsaka daljica med dvema ogliščema se nahaja znotraj ali na robu lika.



    Konveksni štirikotnik



  • Konkavni štirikotniki


    Za konkavne štirikotnike velja:

    • Natanko en notranji kot je večji od 180°.

    • Obstaja daljica med dvema ogliščema, katere del se nahaja zunaj lika.



    Konkavni štirikotnik




Več o konveksnosti in konkavnosti si lahko preberete v poglavju o množicah.


V učbeniku se bomo posvetili predvsem konveksnim štirikotnikom. Posebej bodo obravnavani:

  • paralelogram (sem spadajo tudi romb, pravokotnik, kvadrat),

  • trapez

  • deltoid

  • ostali štirikotniki:

    • tetivni

    • tangentni in

    • bicentrični štirikotnik


Paralelogram



Paralelogram je štirikotnik z dvema paroma vzporednih stranic. Par predstavljata nasproti si stoječi stranici:




Za stranice in notranje kote paralelograma velja:

  • Vzporedni stranici sta enake dolžine.

  • Nasprotna kota skladna.

  • Sosednja kota sta sokota oz. suplementarna kota.



Ob upoštevanju zgornjih lastnosti skico paralelograma lahko poenostavimo:




Značilni elementi paralelograma



  • Diagonala


    Diagonala je daljica, ki povezuje nesosednja oglišča paralelograma.



    Paralelogram ima dve diagonali, ki razpolavljata ena drugo. Označimo jih z malima črkama e in f:




    Paralelogram je središčno simetričen lik s središčem simetrije v presečišču diagonal.



  • Višina


    Višina paralelograma je pravokotna razdalja med vzporednima stranicama.



    Paralelogram ima dve višini. Označujemo ju z in :




  • Notranji kot


    Notranji kot je konveksni kot z vrhom v oglišču paralelograma, njegova kraka pa potekata skozi sosednji oglišči. Notranje kote označujemo z malimi grškimi črkami. Skladna kota pri ogliščih A in C označimo z , skladna kota pri ogliščih B in D pa z :




    Vsota notranjih kotov paralelograma je 360° (polni kot).



  • Zunanji kot


    Zunanji kot je sokot pripadajočega notranjega kota. Zunanji koti so konveksni. Zunanje kote označujemo z malimi grškimi črkami, ki jim dodamo opuščaj - apostrof:




    Vsota zunanjih kotov paralelograma je 360° (polni kot).



Posebni primeri paralelograma



Romb



Romb ima v primerjavi s paralelogramom vse stranice skladne.


Lastnosti romba:

  • Vse stranice so enake dolžine.

  • Nasprotna kota skladna.

  • Sosednja kota sta sokota oz. suplementarna kota.

  • Diagonali se sekata pod pravim kotom.



Ob upoštevanju zgornjih lastnosti je skica romba naslednja:




Pravokotnik



Pravokotnik ima v primerjavi s paralelogramom skladne vse kote.


Lastnosti pravokotnika:

  • Vzporedni stranici sta enake dolžine.

  • Vsi koti so skladni in merijo 90°.

  • Diagonali sta skladni in se razpolavljata.



Ob upoštevanju zgornjih lastnosti je skica pravokotnika naslednja:





Kvadrat



Kvadrat ima v primerjavi s paralelogramom skladne vse stranice in vse kote.


Lastnosti kvadrata:

  • Vse stranice so enake dolžine.

  • Vsi koti so skladni in merijo 90°.

  • Diagonali sta skladni, se razpolavljata in se sekata pod pravim kotom.



Ob upoštevanju zgornjih lastnosti je skica kvadrata naslednja:




Kvadrat je pravilni štirikotnik, ker so vse njegove stranice enako dolge in vsi njegovi koti med seboj skladni.



Obseg paralelograma



Obseg paralelograma se izračuna na naslednji način:


Splošna formula za obseg paralelograma:




Obseg za posebne primere paralelograma se glasi:


Obseg romba in kvadrata:




Obseg pravokotnika:




Ploščina paralelograma



Ploščina paralelograma se izračuna na naslednji način:


Splošna formula za ploščino paralelograma:




Ploščina za posebne primere paralelograma se glasi:


Ploščina romba:




Ploščina pravokotnika:




Ploščina kvadrata:





Primer

Primer je brezplačno dostopen prijavljenim uporabnikom.
 
 
Prijavi se za brezplačen dostop do primera »


Ko paralelogram razdelimo na trikotnike, lahko v njem uporabljamo trikotniške izreke.



Trapez



Trapez je štirikotnik z enim parom vzporednih stranic.


Par predstavljata nasproti si stoječi stranici; ti dve stranici imenujemo osnovnici, preostali dve stranici pa imenujemo kraka:




V trapezu sta sosednja notranja kota ob krakih sokota oz. suplementarna kota:






Značilni elementi trapeza



  • Diagonala


    Diagonala je daljica, ki povezuje nesosednja oglišča trapeza.



    Trapez ima dve diagonali:




    Za diagonali trapeza velja, da je razmerje med odseki delitve diagonal enako razmerju med dolžinami osnovnic:




    pri čemer je prva diagonala




    in druga diagonala




  • Srednjica


    Srednjica je daljica, ki je vzporedna osnovnicama in povezuje središči nevzporednih stranic b in d.



    Srednjica m poteka od razpolovišča enega kraka do razpolovišča drugega kraka trapeza



    Dolžina srednjice je enaka srednji vrednosti osnovnic a in c:




    Običajno se srednjico označuje z malo črko s, da pa je ne bomo zamenjevali s polovičnim obsegom trikotnika, ki se prav tako označi z malo črko s, smo si zanjo izbrali oznako m.


  • Višina


    Višina trapeza je pravokotna razdalja med osnovnicama.



    Označimo jo z malo črko v:




  • Notranji kot


    Notranji kot je konveksni kot z vrhom v oglišču trapeza, njegova kraka pa potekata skozi sosednji oglišči. Notranje kote označujemo z malimi grškimi črkami , , in :




    Vsota notranjih kotov trapeza je 360° (polni kot).



  • Zunanji kot


    Zunanji kot je sokot pripadajočega notranjega kota. Zunanji koti so konveksni. Zunanje kote označujemo z malimi grškimi črkami, ki jim dodamo opuščaj - apostrof:




    Vsota zunanjih kotov trapeza je 360° (polni kot).



Posebni primeri trapeza



Enakokrak trapez



Enakokrak trapez ima v primerjavi s splošnim trapezom skladna kraka in sosednja notranja kota ob osnovnicah.


Lastnosti enakokrakega trapeza:

  • Kraka trapeza sta enake dolžine.

  • Sosednja notranja kota ob osnovnicah sta skladna.

  • Diagonali sta skladni.



Ob upoštevanju zgornjih lastnosti je skica enakokrakega trapeza naslednja:




Primer

Primer je brezplačno dostopen prijavljenim uporabnikom.
 
 
Prijavi se za brezplačen dostop do primera »


Pravokotni trapez



V Enakokrakem trapezu je v primerjavi s splošnim trapezom eden od krakov pravokoten na osnovnici.


Lastnosti pravokotnega trapeza:

  • Eden od krakov je pravokoten na osnovnici.

  • Pravokotni krak je skladen višini trapeza.



Ob upoštevanju zgornjih lastnosti je skica enakokrakega trapeza naslednja:




Obseg trapeza



Obseg trapeza se izračuna na naslednji način:


Splošna formula za obseg trapeza:




Obseg za posebne primere trapeza se glasi:


Obseg enakokrakega trapeza:




Obseg pravokotnega trapeza:




Ploščina trapeza



Ploščina trapeza se izračuna na naslednji način:


Splošna formula za ploščino trapeza se glasi:




pri čemer je m srednjica trapeza, tj. srednja vrednost osnovnic a in c:




Ploščina za posebne primere trapeza se glasi:


Ploščina enakokrakega trapeza:




S pomočjo Pitagorovega izreka izrazimo višino s stranicami:




Ploščino enakokrakega trapeza lahko zapišemo tudi kot:




Ploščina pravokotnega trapeza:




saj je višina enaka stranici d.



Primer

Primer je brezplačno dostopen prijavljenim uporabnikom.
 
 
Prijavi se za brezplačen dostop do primera »


Ko trapez razdelimo na trikotnike, lahko v njem uporabljamo trikotniške izreke.



Deltoid



Deltoid je štirikotnik z dvema paroma stranic enake dolžine:




Za stranice in notranje kote deltoida velja:

  • Deltoid ima dva para sosednjih skladnih stranic.

  • Kota med neskladnimi stranicami sta enaka.



Ob upoštevanju zgornjih lastnosti skico paralelograma lahko poenostavimo:




Primer

Primer je brezplačno dostopen prijavljenim uporabnikom.
 
 
Prijavi se za brezplačen dostop do primera »


Značilni elementi deltoida



  • Diagonala


    Diagonala je daljica, ki povezuje nesosednja oglišča deltoida.



    Deltoid ima dve diagonali, ki se sekata pod pravim kotom. Ena izmed diagonal predstavlja simetralo lika in hkrati razpolavlja drugo diagonalo:


    Diagonala f predstavlja simetralo lika in hkrati razpolavlja diagonalo e.



    Deltoid je osno simetričen geometrijski lik, pri čemer simetralo predstavlja ena od diagonal.



  • Notranji kot


    Notranji kot je konveksni kot z vrhom v oglišču deltoida, njegova kraka pa potekata skozi sosednji oglišči. Notranje kote označujemo z malimi grškimi črkami. Skladna kota pri ogliščih A in C označimo z , kota pri ogliščih B in D pa z oziroma :




    Vsota notranjih kotov deltoida je 360° (polni kot).



  • Zunanji kot


    Zunanji kot je sokot pripadajočega notranjega kota. Zunanji koti so konveksni. Zunanje kote označujemo z malimi grškimi črkami, ki jim dodamo opuščaj - apostrof:




    Vsota zunanjih kotov deltoida je 360° (polni kot).



Obseg deltoida



Obseg deltoida se izračuna na naslednji način:




Ploščina deltoida



Ploščina deltoida se izračuna na naslednji način:




Primer

Primer je brezplačno dostopen prijavljenim uporabnikom.
 
 
Prijavi se za brezplačen dostop do primera »


Ko deltoid razdelimo na trikotnike, lahko v njem uporabljamo trikotniške izreke.



Ostali štirikotniki



Tetivni štirikotnik



Tetivnemu štirikotniku lahko očrtamo krožnico:




Tetivni štirikotnik ima nasprotna kota suplementarna:






Primer

Primer je brezplačno dostopen prijavljenim uporabnikom.
 
 
Prijavi se za brezplačen dostop do primera »


Tangentni štirikotnik



Tangentnemu štirikotniku lahko včrtamo krožnico:




V tangentnem štirikotniku je vsota dolžin dveh nasprotnih stranic enaka vsoti dolžin drugih dveh nasprotnih stranic:




Primer

Primer je brezplačno dostopen prijavljenim uporabnikom.
 
 
Prijavi se za brezplačen dostop do primera »


Bicentrični štirikotnik



Je hkrati tetivni in tangentni štirikotnik. Imenujemo ga tudi tetivnotangentni štirikotnik.


Tangentnemu štirikotniku krožnico lahko tako očrtamo kot tudi včrtamo:




V bicentričnem štirikotniku veljajo naslednje zakonitosti:








Primer

Primer je brezplačno dostopen prijavljenim uporabnikom.
 
 
Prijavi se za brezplačen dostop do primera »



glavni avtor in urednik gradiva: Hitra pomoč pri nalogah, Gregor Rabič s.p.